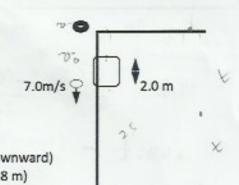
Name:	Period:

Practice with Constant Acceleration

Problem 1

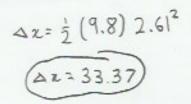
A bullet fired from a .357 magnum pistol has a speed of 410 m/s just as it leaves the barrel (this is called "muzzle velocity"). If the barrel is 11 cm long, find


- a. the rate of acceleration of the bullet (760,000m/s²).
- b. the time it takes to move through the barrel (0.00054 s).

$$\alpha = \frac{410^2}{0.22}$$
 $\alpha = 764090 \text{ m/s}^2$

Problem 2

A ball is dropped from the top of a building.


Near the top of the building there is a window
that is 2.0 meters tall. It takes 0.4 s for the ball
to traverse the 2.0 meter height of the window and the speed of
the ball at the bottom of the window is 7.0 m/s. Assume
no air resistance acts on the ball.

- a. What is the ball's velocity at the top edge of the window? (3.1 m/s, downward)
- b. From how high above the top of the window was the ball dropped? (0.48 m)
- If it hits the ground after two more seconds, what is the ball's displacement from the window bottom to the ground? (34 m downward))
- d. If a second ball thrown upward from the ground with a speed of 14 m/s at the same moment the first ball is dropped, where do the two meet? (33 m from top)

a)
$$7 = v + 0.4.4.8$$

 $v = 7 - 0.4.4.8$
 $v = 3.08 = 15$
b) $2(4.8) \Delta z = 3.08^{2}$
 $\Delta z = \frac{3.08^{2}}{2.4.8}$
 $\Delta z = 0.464 m$

c)
$$0.2 = 2.7. + \frac{1}{2} 9.8 \cdot 2^{2}$$

 $0.2 = 33.6$
d) $0.30e$
 $\frac{1}{2}94^{2} + (-14) + 4\sqrt{\frac{1}{2}}04^{2} = 36$
 $-44 = 36.48$

t= 2.61 c